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a b s t r a c t

Motivated by the needs of vortex methods, we describe three different exact or approxi-
mate solutions to the Poisson equation on the surface of a sphere when the forcing is a
Gaussian of the three-dimensional distance, r2w ¼ expð�2�2ð1� cosðhÞÞ � CGaussð�Þ. (More
precisely, the forcing is a Gaussian minus the ‘‘Gauss constraint constant”, CGauss; this sub-
traction is necessary because w is bounded, for any type of forcing, only if the integral of the
forcing over the sphere is zero [Y. Kimura, H. Okamoto, Vortex on a sphere, J. Phys. Soc. Jpn.
56 (1987) 4203–4206; D.G. Dritschel, Contour dynamics/surgery on the sphere, J. Comput.
Phys. 79 (1988) 477–483]. The Legendre polynomial series is simple and yields the exact
value of the Gauss constraint constant, but converges slowly for large �. The analytic solu-
tion involves nothing more exotic than the exponential integral, but all four terms are sin-
gular at one or the other pole, cancelling in pairs so that w is everywhere nice. The method
of matched asymptotic expansions yields simpler, uniformly valid approximations as series
of inverse even powers of � that converge very rapidly for the large values of � ð� > 40Þ
appropriate for geophysical vortex computations. The series converges to a nonzero
Oðexpð�4�2ÞÞ error everywhere except at the south pole where it diverges linearly with
order instead of the usual factorial order.

� 2009 Published by Elsevier Inc.
1. Introduction

Vortex methods have been a popular computational strategy in fluid mechanics even before electronic computers. Ros-
enhead extended Lord Rayleigh’s linearized theory of the roll-up of a vortex sheet (Kelvin–Helmholtz instability) into the
nonlinear regime by approximating the vortex sheet by a row of point vortices, which are idealizations in which all the vor-
ticity is concentrated into a point. To compute the streamfunction, he analytically solved the Poisson equation for a forcing
that was a Dirac delta function. Superimposing the solutions for each point vortex yielded a coupled system of ordinary dif-
ferential equations in time that described the changing coordinates of each point vortex as a result of their mutual interac-
tion. Armed with nothing more than a mechanical calculator, he generated numerical solutions with eight vortices [30].

Later studies have used thousands of point vortices to confirm Rosenhead’s qualitative picture [21,22], but there is a fun-
damental difficulty: a smooth field of vorticity is approximated by a collection of delta function spikes. More recent work has
therefore shifted to vortex blobs; a popular species of blob is the ‘‘Gaussian vortex” in which the vorticity falls as an expo-
nential of the square of distance from the center of the vortex [31,3]. Point vortex methods have been applied to flow on the
surface of a sphere [19,2,14,17,15,16,13,18,20,24–29,32–37,39]. However, extensions of Gaussian vortex methods to the
sphere, as appropriate for adaptive modeling of atmospheric and oceanic flows, are handicapped by the lack of explicit solu-
tions for the Poisson equation with Gaussian forcing.
y Elsevier Inc.
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Here, we give three different solutions to the Poisson equation for a Gaussian centered on the north pole with the stream-
function dependent on colatitude h only:
r2w ¼ expð�2�2ð1� cosðhÞÞÞ � CGaussð�Þ ð1Þ
where � is a positive constant and CGaussð�Þ is the ‘‘Gauss Constraint constant” (Fig. 1). There is no loss of generality in restrict-
ing our quest to a Gaussian centered on the north pole because the solution for a Gaussian centered at an arbitrary point on
the sphere can be obtained by a coordinate rotation given explicitly in Section 5 below.

Although our personal motivation is vortex methods for fluids, the Poisson equation arises in many fields of science and
engineering. Our method is completely general in that r2w ¼ f can be solved by expanding the forcing f in a Gaussian RBF
series; the streamfunction is then a series of translated copies of the solution for a single Gaussian that is derived, in three
different forms, below. Generalizations of this ‘‘method of fundamental solutions” (though not the Poisson equation on a
sphere) are ably reviewed in [23].

There are multiple ways to measure distance on the sphere. Our forcing is Gaussian in the three-dimensional Euclidean
distance on the sphere as used by [4,10–12] instead of the ‘‘geodesic” distance used in some other studies. For small h (near
the north pole),
expð�2�2ð1� cosðhÞÞÞ � CGaussð�Þ � expð��2h2Þ; h� 1 ð2Þ
This shows explicitly that the forcing is indeed a Gaussian and the e-folding scale of its decay is 1=� (where the ‘‘e-folding
scale” is the distance from the center to where w has fallen to expð�1Þ of its maximum).

We claim no novelty for the solution in the form of an infinite series of Legendre polynomials, but modern computers
make it easy to determine how many terms must be retained in the truncation. The Legendre series also yields the exact
value of the Gauss Constraint constant which must be added to the Gaussian forcing so that the vorticity, averaged over
the sphere, is zero. The Gauss Constraint is a necessary condition for the Poisson solution w to be bounded.

By introducing a new symbol v for dw=dx, we reduce the order of the differential equation and derive the exact solution.
Even though exact solution is smooth everywhere, the analytic expression has the flaw that two terms are singular at the
north pole and two other terms are singular at the south pole; the solution is smooth only because of exact cancellation
of these singularities. Furthermore, the exact solution is too complicated to allow for easy interpretation.

Therefore, we solve the problem a third way by using matched asymptotic expansions for large �. This is reasonable be-
cause for vortex blob methods, we are interested only in very large �. For example, the maximum tangential velocities of a
Gaussian vortex occur at 1=

ffiffiffi
2
p

of the e-folding scale. For a hurricane, a radius-of-maximum-tangential-winds of 100 km is
not uncommon, implying � � 40. In adaptive modeling of the atmosphere, we would in reality wish to represent a hurricane
by a flock of overlapping vortices of much smaller size than the storm rather than by a single vortex. To match the resolution
of current operational forecasting models, we need � > 1000.

The perturbation series is an expansion in inverse powers of the square of �, so the series converges extremely fast for
geophysical applications.
Fig. 1. Schematic of a Gaussian forcing centered on the north pole, here for � ¼ 5. The thick black curve is the equator.
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2. Solution by spherical harmonics/Legendre polynomials

2.1. General solution

The spherical harmonics are defined to be the eigenfunctions of the Laplace operator on the surface of a sphere. Nine-
teenth century theory showed that these are a complete set of orthogonal basis functions for the sphere. It is easy to solve
the Poisson equation on the sphere for any forcing f merely by expanding both f and w as spherical harmonic series.

Theorem 2.1. Suppose a function f has the spherical harmonic series
f ¼
XN

n¼0

Xn

m¼�n

fmnYm
n ð3Þ
where
fmn ¼
Z

S
fðk; hÞYm

n ðk; hÞ sinðhÞdhdk ð4Þ
If the ‘‘Gauss constraint”,
Z
S

fðk; hÞ sinðhÞdhdk ¼ 0 $ f00 ¼ 0; ð5Þ
is satisfied, then the Poisson equation on a sphere,
r2w ¼ f; ð6Þ
has the general series solution
wðk; hÞ ¼
XN

n¼1

Xn

m¼�n

� 1
nðnþ 1Þ

� �
fmnYm

n ðh; kÞ ð7Þ
Proof. The eigenequation of the spherical harmonics is
r2Ym
n ¼ �nðnþ 1ÞYm

n ð8Þ
Substituting spherical harmonic series for both f and w, applying the eigenrelation, and matching spherical harmonic terms
gives the theorem.

The ‘‘Gauss constraint” is necessary because the sole n ¼ 0 term, Y0
0ðk; hÞ ¼ 1 has an eigenvalue of zero. To avoid dividing

by zero, we must omit the n ¼ 0 term. This omission requires that f00 ¼ 0. h
2.2. Gaussian vortex centered on the north pole

When f is axisymmetric, that is, varies only with h, the Poisson equation degenerates into an ordinary differential equation
in colatitude. The spherical harmonic series degenerates into a series of Legendre polynomials.

The ‘‘Gauss constraint” makes it impossible to find a bounded solution for a purely Gaussian forcing, so the problem must
be one of a Gaussian minus a constant CGauss which is chosen so that the zeroth coefficient of the Legendre series of the total
vorticity f is zero, that is,
Z p

0
fexpð�2�2ð1� cosðhÞÞÞ � CGaussg sinðhÞdh ¼ 0 ð9Þ
Theorem 2.2. The solution to
r2w ¼ expð�2�2ð1� cosðhÞÞÞ � CGaussð�Þ ð10Þ
where the ‘‘Gauss constraint constant” CGauss is
CGauss ¼ 1
4�2 f1� expð�4�2Þg ð11Þ
is
w ¼
X1
n¼1

� 1
nðnþ 1Þ

� �
ð2nþ 1Þ

2

ffiffiffiffi
p
p

�
expð�2�2ÞInþ1=2ð2�2ÞPnðcosðhÞÞ ð12Þ
where the PnðxÞ are the usual unnormalized Legendre polynomials and Inþ1=2 are the usual modified spherical Bessel functions.

Proof. Follows from the previous theorem and the Legendre expansion of a Gaussian in [4]. h
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Fig. 2. Isolines of the base-10 logarithm of the absolute value of the Legendre coefficients in x ¼ cosðhÞ for fðhÞ ¼ expð�2�2ð1� xÞÞ � CGaussð�Þ versus degree
and �. Because jPnðxÞj 6 1 for all x 2 ½�1;1�, the error in truncating after the n-th term is only slightly larger than the n-th coefficient according to the ‘‘Last
Coefficient Rule-of-Thumb” in Chapter 2, Section 12 of [6].
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The I-Bessel functions of half-integral order are so-called ‘‘spherical” Bessel functions: each Inþ1=2ðxÞ is the product of an
exponential with a polynomial of degree ðnþ 1Þ in 1=x [1]. One can numerically compute N coefficients in OðNÞ operations by
using the usual three-term recurrence relations for Bessel functions. The Legendre series converges ‘‘supergeometrically” in
the language of [6] because both f and w are entire functions, analytic everywhere in the complex h-plane. Furthermore, the
Gauss constraint falls out naturally.

These virtues are offset by the unfortunate fact that the rate of convergence, though always exponential, is very slow for
large � as illustrated in Fig. 2. Full machine precision requires a Legendre truncation of roughly N � 10�. Since vortex blob
applications typically require very large �, e. g., � > 1000, the Legendre series requires thousands of terms even if we accept
an accuracy of only a couple of decimal places. Thus, for large �, something better is needed.

3. Exact solution

When the Gaussian vortex is centered on the north pole, the solution is independent of longitude and the Poisson equa-
tion reduces to an ordinary differential equation in colatitude. The boundary conditions are that the solution w is analytic
everywhere include the poles. It is convenient to eliminate the trigonometric functions by using the coordinate
x ¼ cosðhÞ ð13Þ
The differential operator becomes the algebraic form of the operator that appears in the eigenequation of the Legendre
polynomials:
ð1� x2Þwxx � 2xwx ¼ expð�2�2ð1� xÞÞ � CGauss ð14Þ
Because the unknown does not appear except in differentiated form, this second order equation can be converted to a first
order equation by defining the new unknown
v � wx ð15Þ
The inhomogeneous, linear first order equation is
vx �
2x

1� x2 v ¼ 1
1� x2 fexpð�2�2ð1� xÞÞ � CGaussg ð16Þ
This can be solved by the usual formula for an ODE of the form
vx þ pðxÞv ¼ f ðxÞ ð17Þ
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This yields
Table 1
Singula

Term

1
4�2 f1�

1
4�2 E1ð2

1
4�2 expð

� 1
4�2 ex
vðxÞ ¼ A expðQðxÞÞ þ expðQðxÞÞ
Z x

expð�QðyÞÞf ðyÞdy ð18Þ
where here
pðxÞ ¼ �2x
1� x2 ð19Þ

QðxÞ ¼ �
Z x

pðyÞdy ¼
Z x 2y

1� y2 dy ¼ � logð1� x2Þ ð20Þ
which implies that
expðQðxÞÞ ¼ 1
1� x2 ð21Þ
It follows that
expð�QðxÞÞf ðxÞ ¼ fexpð�2�2ð1� xÞÞ � CGaussg ð22ÞZ x

expð�QðyÞÞf ðyÞdy ¼ 1
2�2 expð�2�2ð1� xÞÞ � CGaussx ð23Þ
The general solution for v (i. e., dw=dx) is therefore
v ¼ 1
1� x2 Aþ 1

2�2 expð�2�2ð1� xÞÞ � 1
4�2 ð1� expð�4�2ÞÞx

� �
ð24Þ
where A is the multiplier of the homogeneous solution; this must be chosen so as to obtain a nonsingular solution. Denote
the numerator of vðxÞ by
NðxÞ � Aþ 1
2�2 expð�2�2ð1� xÞÞ � 1

4�2 ð1� expð�4�2ÞÞx ð25Þ
To eliminate the singularities, Nð�1Þ ¼ 0, which requires
A ¼ � 1
4�2 ð1þ expð�4�2ÞÞ ð26Þ
Then
v ¼ 1
2�2

expð�2�2ð1� xÞÞ
1� x2 � 1

4�2

1
1� x

� 1
4�2 expð�4�2Þ 1

1þ x
ð27Þ
Formally integrating once gives the solution for w, omitting an arbitrary additive constant which has no physical meaning,
w ¼ 1
4�2 f1� expð�4�2Þg logð1� xÞ � 1

4�2 expð�4�2Þ log
1þ x
1� x

� �
þ 1

4�2 E1ð2�2½1� x�Þ þ 1
4�2 expð�4�2ÞEið2�2½1þ x�Þ
where we have employed the definitions of special functions in [1]:
E1ðzÞ �
Z 1

1

expð�ztÞ
t

dt ¼
Z 1

z

expð�yÞ
y

dy ð28Þ

EiðzÞ � cþ logðzÞ þ
Z z

0

expðtÞ � 1
t

dt ¼ P
Z z

�1

expðtÞ
t

dt ð29Þ
where P denotes the principal value. In Matlab, E1ðxÞ ¼ expintðxÞ and EiðxÞ ¼ �Rð�expintð�xÞÞ; the Maple equivalents are
E1ðxÞ ¼ Eið1; xÞ and EiðxÞ ¼ �RðEið1;�xÞÞ.

Using standard software to evaluate the exponential functions can cause difficulties at both poles because there are log-
arithmic singularities that cancel in pairs. It is therefore best to use the leading terms of power series expansions very close
to the poles as catalogued in Table 1.
rities.

Singularity at north pole ðh ¼ 0$ x ¼ 1Þ Singularity at south pole ðh ¼ p$ x ¼ �1Þ

expð�4�2Þg logð1� xÞ 1
2�2 f1� expð�4�2Þg logððhÞÞ Oð��2Þ; nonsingular

�2½1� x�Þ � 1
2�2 logðhÞ Oðexpð�4�2ÞÞ; nonsingular

�4�2ÞEið2�2½1þ x�Þ O(1); nonsingular expð�4�2Þ 1
2�2 logðh� pÞ

pð�4�2Þ logðð1þ xÞ=ð1� xÞÞ 1
2�2 expð�4�2Þ logðhÞ � 1

2�2 expð�4�2Þ logðh� pÞ
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One might suppose that it would be possible to simplify the exact solution and avoid difficulties at the south pole at least
by deleting terms multiplied by expð�4�2Þ. This factor is the amplitude of the vortex f at the south pole; it is smaller than
machine epsilon, 2:2� 10�16, for � > 3, much smaller than would be used in any vortex blob on the sphere. However, each of
the four terms in the exact solution is logarithmically singular at either the north or south pole or both. (Fortunately, these
singularities are ‘‘removable”; these singularities in pairs cancel so that the solution is nonsingular everywhere on the sphere
as catalogued in Table 1.)

Crowdy independently derived the analytical solution [7].

4. Interpretation: method of matched asymptotic expansions

4.1. Introduction and the outer approximation

One way of simplifying and interpreting the exact solution for large � is to approximately solve the same problem using
the method of matched asymptotic expansions. When �	 1, the inhomogeneous term fðhÞ is non-negligible only in a small
region near the north pole. However, the smaller the region on the sphere, the more nearly this region is planar. This implies
that the lowest order ‘‘inner approximation” around the north pole will be given by the solution of the Poisson equation with
Gaussian forcing on an unbounded plane.

Far from the north pole, the forcing is exponentially small and may be neglected. It follows that outside of the ‘‘inner”
polar cap region whose width is Oð1=�Þ, the streamfunction w in this ‘‘outer” region must satisfy the Laplace equation (to
within an error Oðexpð�4�2Þ). Furthermore, since the forcing and therefore the solution w are both axisymmetric (that is,
longitude-independent) over the entire globe, it follows that the Laplacian solution must be axisymmetric. The twin con-
straints of axisymmetry and solving the Laplacian are so strong that the outer solution is uniquely determined to within
an arbitrary multiplicative constant. The outer solution is in fact proportional to the known Green’s function for the Poisson
equation on the sphere, which is the limit �!1 of the solution for a Gaussian forcing and also is the Poisson solution for a
point vortex.

This assertion that the outer solution is proportional to that of a point vortex on the sphere can be justified more rigor-
ously by solving Poisson’s equation on a spherical domain that excludes a polar cap of h 6 hcap and decomposing the solution
into two parts. One part, wLaplace solves the Laplace equation with the boundary condition wcapðhcapÞ ¼ q where q is a constant.
The second part solves the Poisson equation with a forcing which is everywhere smaller than expð�2�2Þ; because the solu-
tion to the Poisson equation is the same order of magnitude as the forcing, it follows that wPoisson 
 Oðexpð�2�2ÞÞ and thus is
negligible for large �.

The uniqueness of the solution to Laplace’s equation implies that wLaplaceðh; qÞ is unique. The solution wðh; �Þ to the Gaussian-
forced Poisson equation over the globe will have some value wðhcap; �Þ at h ¼ hcap. It follows that if the boundary value q for the
0 0.5 1 1.5 2 2.5 3
10-15

10-10

10-5

100

θ

Forcing  & ψouter- ψexact:  ε =10

Gaussian ζ
ψouter- ψexact

Fig. 3. Decay of the forcing and of the difference between the exact solution and the solution for a point vortex at the north pole (‘‘outer solution”) for
� ¼ 10. The graphs show that the exact w is tending to wouter at a Gaussian rate, that is, roughly as fast as the forcing f is decaying with distance from the
north pole. Both curves are below the axis limit, 10�15, for h > 1=2; we have deliberately kept the graph range as h 2 ½0;p�, which is the whole globe, to
emphasize that the effects of distant vortices or sources can be handled by fast multipole methods or treecodes exactly as in point vortex models.
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Laplace solution is chosen to be q ¼ wðhcap; �Þ, then the Laplacian solution will approximate the Gaussian-forced Poisson
solution for h > hcap with an error no worse than Ofexpð�2�2ð1� cosðhcapÞÞÞg, an error which falls exponentially fast as �!1.

In most applications of matched asymptotics, the inner and outer solutions are both given by infinite power series in the
small parameter. Our problem is simpler because the exponential rate of decay of the inner approximation to the outer solu-
tion, illustrated in Fig. 3, implies that the corrections to the outer solution are smaller than any finite inverse power of �. This
implies that to all orders in perturbation theory, the outer approximation is the point vortex solution:
wouterðh; �Þ 
 q logð1� xÞ þ C þ Oðexpð�2�2ÞÞ ð30Þ
where as before x � cosðhÞ; q is a constant that must be determined by matching to the inner approximation and where C is
an arbitrary constant. (The constant arises because the solution to the Poisson equation is only determined to within an arbi-
trary constant; we will later choose C as convenient for matching.) The statement that the outer approximation is an ‘‘all
orders” approximation does not imply that it is exact [it is not], but only that the error is exponentially small in �. The constant
qð�Þ must be determined by asymptotic matching to the inner solution.

The exponentially-fast decay to the outer solution is also important for another reason. Point vortex methods on the
sphere have been accelerated by using fast multipole methods or related algorithms. Far from the region of nonzero vorticity,
the effects of an entire cluster of point vortices can be approximated by a single low order Laurent or power series, thus
replacing many terms by a few. Exactly the same strategy can be applied with Gaussian vortices because the ‘‘far field” or
‘‘outer solution” is the same to within exponentially small error, that is, equal to that of the point vortex, whenever the Gaus-
sians are narrow compared to the radius of the sphere.

4.2. Shifted coordinate

It is convenient to define a shifted coordinate
z ¼ 1� x $ x ¼ 1� z ð31Þ
so that the new coordinate z is ‘‘quasi-radial” in the sense that z ¼ 0 at the north pole, the peak of the Gaussian forcing. The
differential equation becomes without approximation
zð2� zÞwzz þ 2ð1� zÞwz ¼ expð�2�2zÞ � CGauss ð32Þ
The logarithm in the outer approximation helpfully simplifies to logðzÞ.

4.3. The inner approximation

Because the Gaussian forcing decays on an Oð�2Þ length scale in z, it is convenient to define a rescaled inner coordinate Z,
as usual in matched asymptotics, where
Z � z�2 $ z ¼ Z=�2 ð33Þ
d
dz
¼ �2 d

dZ
ð34Þ
Neglecting terms exponentially small for �	 1, as already necessary in the outer approximation, simplifies the Gauss
constraint constant to
CGauss 
 1
4�2 ð35Þ
The equation in the inner coordinate is then
Zð2� Z=�2ÞwZZ þ 2ð1� Z=�2ÞwZ ¼
1
�2 expð�2ZÞ � 1

4
1
�4 ð36Þ
Note that the constant CGauss is small compared to the maximum value of the Gaussian, and therefore will appear only in the
second order problem at Oð1=�4Þ.

Expand
winner ¼ 1
�2 fw

1;inner þ ��2w2;inner þ . . .g ð37Þ
The lowest order problem is
2zw1;inner
ZZ þ 2w1;inner

Z ¼ expð�2ZÞ ð38Þ
The general solution is
w1;innerðZÞ ¼ 1
4

E1ð2ZÞ þ C1 logð2ZÞ þ C2 ð39Þ
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Because w must be nonsingular at the origin and
E1ð2ZÞ � � logð2ZÞ þ nonsingular terms; ð40Þ
we must choose C1 ¼ 1=4. Because the solution to the Poisson equation, which does not contain an undifferentiated w, is
determined only within an arbitrary additive constant, we can choose C2 to be whatever we wish. (In particular, the veloc-
ities in vortex flow, which are proportional to derivatives of the streamfunction w, are independent of C2.) The simplest
choice, made below, is C2 ¼ 0. We obtain
w1;inner ¼ 1
4
fE1ð2ZÞ þ logð2ZÞg ð41Þ
Now near the north pole,
2Z � �2h2 � r2 ð42Þ
where r is a radial coefficient in a local polar coordinate system, scaled by �. Expressed in terms of r, the lowest order solution
on the sphere is identical with the solution to the Poisson equation with Gaussian forcing on an unbounded two-dimensional
plane:
w1;inner ¼ 1
4
fE1ðr2Þ þ logðr2Þg ð43Þ
Proceeding similarly to fourth order and explicitly inserting the powers of � gives
w4;uniform 
 1
�2

1
4
fE1ð2ZÞ þ logð2ZÞg þ 1

�4

1
16

expð�2ZÞ þ 1
�6 expð�2ZÞ 1

64
þ 1

32
Z

� �

þ 1
�8 expð�2ZÞ 1

128
þ 1

64
Z þ 1

64
Z2

� �
ð44Þ
or rewritten in terms of x
w4;uniform 
 1
�2

1
4
fE1ð2�2ð1� xÞÞ þ logð2�2ð1� xÞÞg þ 1

�4

1
16

expð�2�2ð1� xÞÞ þ 1
�6 expð�2�2ð1� xÞÞ 1

64
þ 1

32
�2ð1� xÞ

� �

þ 1
�8 expð�2�2ð1� xÞÞ 1

128
þ 1

64
�2ð1� xÞ þ 1

64
�4ð1� xÞ2

� �
ð45Þ
In other singular perturbation problems, it is standard to determine the constant qð�Þ that is an overall multiplier of the
outer solution by asymptotically matching the inner and outer approximations. Then the inner and outer approximations
may be combined into a uniformly valid expansion by (i) adding the inner and outer solutions and (ii) subtracting the inner
limit of the outer approximation with all operations performed to a given order. For this problem using the coordinate Z, all
this is unnecessary: the inner approximation to all orders in uniformly valid everywhere on the globe, and not merely where
1� cosðhÞ 
 Oð�2Þ. The reasons are that:

1. The inner approximation contains a term proportional to the outer approximation, q logðð1� cosðhÞÞ þ C where
q ¼ 1=ð4�2Þ and C ¼ logð2�2Þ=ð4�2Þ.

2. All other terms in the inner approximation (including the term in E1) decay exponentially fast as h increases away from the
north pole.

Because the outer approximation is also the inner limit of the outer approximation, the usual process of uniformizing in-
ner and outer expansions merely adds and subtracts the same term, ð1=4�2Þ logð2�2ð1� cosðhÞÞ. Consequently, we have re-
placed the superscript ‘‘inner” by ‘‘uniform” in Eq. (44).

It is also possible to derive a uniform approximation by attacking the equivalent differential equation in colatitude
@2w

@h2 þ cotðhÞ @w
@h
¼ expð�2�2ð1� cosðhÞÞÞ � CGauss ð46Þ
This yields
w4;uniform ¼ 1
4

1
�2 E1ð�2h2Þ þ logf1� cosðhÞg
� �

þ 1
�4 expð��2h2Þ 1

16
þ 1

48
�2h2

� �

þ 1
�6 expð��2h2Þ 1

64
þ 1

64
�2h2 þ 31

5760
�4h4 þ 1

1152
�6h6

� �

þ 1
�8 expð��2h2Þ 1

128
þ 1

128
�2h2 þ 1

256
�4h4 þ 821

725760
�6h6 þ 43

207360
�8h8 þ 1

41472
�10h10

� �
ð47Þ
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As illustrated in Fig. 4, this is very accurate even for � ¼ 10, which is far smaller than one is likely to use in vortex blob
models. However, the series in h has more terms. Furthermore, the derivation is more laborious because the inner approx-
imation contains a term proportional to logð�2h2Þ, which is a good approximation to the point vortex solution only near the
north pole. This requires non-trivial additions, expansions and subtractions to obtain the uniform approximation. In contrast,
when z ¼ 1� cosðhÞ is the coordinate, the logarithmic term in the inner approximation is proportional to logð2�2ð1� cosðhÞÞ,
which is the outer approximation. For this problem, clearly all coordinates are not created equal.

4.4. Interpretation of matched asymptotics

The lowest order uniform perturbative approximation is much simpler than the exact solution and much easier to inter-
pret. In the same way that the Gaussian forcing generalizes from the plane to the sphere as
expð�r2Þ ! expð�2�2ð1� cosðhÞÞ ð48Þ

1
4�2 fE1ðr2Þ þ logðr2Þg ! 1

4
1
�2 fE1ð2�2ð1� cosðhÞÞÞ þ logð2�2ð1� cosðhÞÞÞg ð49Þ
In other words, both the forcing and the logarithm are extended from plane to sphere by r2 ! 2�2ð1� cosðhÞÞ.
We have extended the matched asymptotics expansion to fourth order for two minor reasons. The first minor reason is

that this problem is a good illustration for a textbook on singular perturbation theory: the solution at each order can be
found explicitly by an algebraic manipulation language like Maple, and the problem is both interesting and simple because
the outer approximation is a single term to all orders. Further, the exact solution is available for comparison, explicitly
displaying the exponentially small, beyond-all-order terms (proportional to expð�4�2Þ) which make the asymptotic series
divergent. It is anomalous, and therefore also interesting, that the inner approximation is uniformly valid over the whole
sphere.

There are two reasons for deriving the perturbation series. First, the exact solution is singular at the south pole, and
there is no simple way (other than matched asymptotics!) to remove the singularities. In contrast, the perturbation
series asymptotes, exponentially fast, to logð1� cosðhÞÞ=ð4�2Þ, the point vortex solution, which is not singular at the south
pole.

Second, in vortex blob methods, one must sum many Gaussian vortices, centered at different points on the globe, to ob-
tain the complete flow. The summation can be greatly accelerated by treating the long-range interactions by fast multipole
methods or tree codes exactly as already done for point vortex methods on the sphere by Sakajo [38,9]. Matched asymptotics
shows that long-range interactions – the ‘‘far field” of a given vortex – are identical with those of point vortices except for an
exponentially small error. It follows that Sakajo’s treecode can be applied to Gaussian blobs without modification. One can
still evaluate the near-field influence by using the exact solution, but because this requires the special function Ei as well as
E1, the perturbative approximation may be more efficient for sufficiently large �.



J.P. Boyd, C. Zhou / Journal of Computational Physics 228 (2009) 4702–4713 4711
5. Coordinate rotation

The solution for a Gaussian centered at the north pole is a function only of � and cosðhÞ. In a minor change of notation, let
us denote this solution by wnpðh; �Þ. Suppose the forcing vortex is rotated to lie at the points ðkcenter ; hcenterÞ. Then if the eval-
uation point is ðkeval; hevalÞ, the solution to the Gaussian-forced Poisson equation is
wðkeval; heval; kcenter ; hcenterÞ ¼ wnpðcosðhðkeval; heval; kcenter; hcenterÞÞ; �Þ ð50Þ
where
cosðhÞ ¼ cosðhcenterÞ cosðhevalÞ þ sinðhcenterÞ sinðhevalÞ cosðkcenter � kevalÞ ð51Þ
6. Derivatives

In fluid mechanics, it is very important to evaluate the derivatives of w because these are the fluid velocities.
By using the partial fraction decomposition 1=ð1� x2Þ ¼ ð1=2Þð1=ð1� xÞ þ 1=ð1þ xÞÞ, (27) for dw=dxðvÞ can be rewritten

without approximation as
dw
dx
¼ 1

4�2

expð�2�2ð1� xÞÞ � 1
1� x

þ expð�2�2ð1� xÞÞ � expð�4�2Þ
1þ x

� �
ð52Þ
The poles at x ¼ �1 are only apparent; the singularities cancel.
The perturbation series is free of the cancelling singularities at x ¼ �1 (the south pole). The lowest order uniform approx-

imation exactly reproduces the terms above 1=ð1� xÞ in (52). The fourth term, proportional to expð�4�2Þ, is dropped from
the perturbation series because of its exponential smallness. (This term is singular at the south pole, and therefore not small
at the south pole but this is cancelled by the singularity in the third term, expð�2�2ð1� xÞÞ=ð1þ xÞ; we can therefore neglect
expð�4�2Þ=ð1þ xÞ over the whole globe provided we modify the third term so as to remove its singularity at the south pole).
The third term does indeed lose its singularity because in the perturbation series, its singular denominator, 1=ð1þ xÞ, is re-
placed by its Taylor expansion about x ¼ 1:
1
4�2

expð�2�2ð1� xÞÞ
1þ x

� expð�2�2ð1� xÞÞ
4�2

1
2
þ 1

4
ð1� xÞ þ 1

8
ð1� xÞ2 þ . . .

� �
ð53Þ
The derivatives with respect to k and h follow by applying the chain rule:
@w
@k
¼ @x
@k

@w
@x
¼ fsinðhcenterÞ sinðhevalÞ sinðkcenter � kevalÞg

@w
@x

ð54Þ

@w
@h
¼ @x
@h

@w
@x
¼ f� cosðhcenterÞ sinðhevalÞ þ sinðhcenterÞ cosðhevalÞ cosðkcenter � kevalÞg

@w
@x

ð55Þ
To apply a fast multipole or treecode method to sum the far field of the derivative of a Gaussian vortex, it is necessary that
the error in approximating dw=dx by the outer approximation – the derivative of the point vortex – should be less than the
desired error tolerance. This error in approximating the derivative by the point vortex derivative is
Eouter � dw
dx
þ 1

4�2

1
1� x

� 1
4�2

expð�2�2ð1� xÞÞ
1� x

ð56Þ
This approximation is inaccurate in a small region around x ¼ 1 where the treecode/multipole methods are inapplicable
anyway; this formula is accurate wherever jEouterj � 1.

7. Divergence and hyperasymptotics in the perturbation series

Singular perturbation series usually diverge factorially; for a fixed, small value of the perturbation parameter �, the error
decreases as more terms are added to the expansion up to some optimum order Noptð�Þ and then grows factorially as the
series truncation order N !1. The underlying reason for the divergence is a mathematical crime: An embedded expansion
has been used beyond its radius of convergence.

For example, the Stieltjes function
Sð1=�Þ �
Z 1

0

expð�tÞ
1þ t=�

dt 

XN

n¼0

ð�1Þnn!
1
�n ð57Þ
has an expansion which is derived by replacing 1=ð1þ t=�Þ by the geometric series
PN

n¼0ð�1Þntn=�n. The mathematical crime
is that this embedded expansion converges only for jtj < � because 1=ð1þ t=�Þ is infinite at t ¼ ��, but the interval of inte-
gration is infinite. The reason that the power series is useful anyway is that the integrand has decayed to less than expð��Þ at
the limit of convergence of the geometric series; one can prove if N ¼ Noptð�Þ ¼ roundð�Þ, the error is approximatelyffiffiffiffiffiffiffiffiffiffiffi

p�=2
p

expð��Þ (p. 123 of [5]).
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The geometric series is also used illegitimately in our problem, but the expansion of 1=ð1þ xÞ about x ¼ �1 diverges only
at the south pole. Because this expansion is in powers of ðxþ 1Þ=2, it is convenient to introduce
y � ð1� xÞ=2 ð58Þ
By using the identity
1
1þ x

¼ 1
2

1
1� y

¼ 1
2

XM�1

n¼0

yn þ 1
2

yM

1� y
ð59Þ
one can show that the error in truncating the perturbation series for dw=dx after Nth order is given without approximation as
EN ¼
1

8�2

1
1� y

fexpð�4�2yÞyN�1 � expð�4�2Þg ð60Þ
from which it follows that
lim
N!1;fixedy

EN ¼ �
1

8�2 expð�4�2Þ 1
1� y

ð61Þ
Applying l’Hopital’s Rule,
lim
y!1;fixed N

EN ¼
1
2

expð�4�2Þ 1� N
4�2

� �
ð62Þ
The first limit shows the singular perturbation series does not converge to zero error, but does not diverge factorially with N
either; instead, for all x except the south pole, it converges to an error Oðexpð�4�2ÞÞ. The second limit shows that at the south
pole ðx ¼ �1$ y ¼ 1Þ, the error does diverge as N !1, but the divergence is linear in N rather than proportional to
expðN logðNÞÞ½N!� as is typical. The error is smallest when N � Noptð�Þ ¼ roundð4�2Þ.

These similarities and differences from other asymptotic-but-divergent series makes the Poisson equation on the sphere
an interesting example of singular perturbation series. We do not know of a textbook example with multiple length scales
(Oð1=�Þ for the forcing, Oð1Þ for the spherical geometry) that exhibits a similar convergence to nonzero-but-exponentially
small error, nor diverges linearly instead of factorially at a point.

For large �, the maximum error in the Nth order perturbation series occurs at ð1� xÞ � 2ðN � 1Þ=�2 and is
max
x2½�1;1�

jENj 

expð�½N � 1�ÞðN � 1ÞN�1

21þ2N

1
�2N ; N ¼ 1;2; . . . ð63Þ
8. Summary

We present three different explicit solutions to Poisson’s equation on the surface of a sphere when the forcing f is a
Gaussian of arbitrary width located at an arbitrary point on the sphere. This can be extended to a general, adaptive Poisson
solver by expanding an arbitrary f as a series of Gaussian radial basis functions (RBFs) where the RBF ‘‘centers” are concen-
trated only where f is non-negligible.

The Legendre series is the best for very wide Gaussians (small �) and yields the exact Gauss constraint constant for all �.
The exact solution is simple, involving nothing more exotic than two variants of the exponential integral.
The matched asymptotic expansion is valuable because the outer solution is the same as for point vortex methods. It is

therefore possible to greatly accelerate the RBF/Poisson solver by using fast multipole methods or treecodes exactly as for
point vortex methods.

The singular perturbation series diverges linearly, instead of with the usual factorial rate, at the south pole. It converges to
a nonzero error of Oðexpð�4�2ÞÞ everywhere else on the globe. The inner approximation is also a spatially uniform approx-
imation because it contains the outer approximation and the other terms decay exponentially fast away from the north pole.
Because of these unusual features and its simplicity, this series is an interesting example for a textbook on singular pertur-
bation methods.

For the very large value of � that will be used in geophysical vortex blob models, the lowest order or two of the pertur-
bation series is extremely accurate and simpler than the exact solution.
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